Antagonism of LIN-17/Frizzled and LIN-18/Ryk in Nematode Vulva Induction Reveals Evolutionary Alterations in Core Developmental Pathways
نویسندگان
چکیده
Most diversity in animals and plants results from the modification of already existing structures. Many organ systems, for example, are permanently modified during evolution to create developmental and morphological diversity, but little is known about the evolution of the underlying developmental mechanisms. The theory of developmental systems drift proposes that the development of conserved morphological structures can involve large-scale modifications in their regulatory mechanisms. We test this hypothesis by comparing vulva induction in two genetically tractable nematodes, Caenorhabditis elegans and Pristionchus pacificus. Previous work indicated that the vulva is induced by epidermal growth factor (EGF)/RAS and WNT signaling in Caenorhabditis and Pristionchus, respectively. Here, we show that the evolution of vulva induction involves major molecular alterations and that this shift of signaling pathways involves a novel wiring of WNT signaling and the acquisition of novel domains in otherwise conserved receptors in Pristionchus vulva induction. First, Ppa-LIN-17/Frizzled acts as an antagonist of WNT signaling and suppresses the ligand Ppa-EGL-20 by ligand sequestration. Second, Ppa-LIN-18/Ryk transmits WNT signaling and requires inhibitory SH3 domain binding motifs, unknown from Cel-LIN-18/Ryk. Third, Ppa-LIN-18/Ryk signaling involves Axin and β-catenin and Ppa-axl-1/Axin is epistatic to Ppa-lin-18/Ryk. These results confirm developmental system drift as an important theory for the evolution of organ systems and they highlight the significance of protein modularity in signal transduction and the dynamics of signaling networks.
منابع مشابه
C. elegans LIN-18 Is a Ryk Ortholog and Functions in Parallel to LIN-17/Frizzled in Wnt Signaling
Wnt proteins are intercellular signals that regulate various aspects of animal development. In Caenorhabditis elegans, mutations in lin-17, a Frizzled-class Wnt receptor, and in lin-18 affect cell fate patterning in the P7.p vulval lineage. We found that lin-18 encodes a member of the Ryk/Derailed family of tyrosine kinase-related receptors, recently found to function as Wnt receptors. Members ...
متن کاملThe C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity
Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhab...
متن کاملWnt Signaling Induces Vulva Development in the Nematode Pristionchus pacificus
The Caenorhabditis elegans vulva is induced by a member of the epidermal growth factor (EGF) family that is expressed in the gonadal anchor cell, representing a prime example of signaling processes in animal development. Comparative studies indicated that vulva induction has changed rapidly during evolution. However, nothing was known about the molecular mechanisms underlying these differences....
متن کاملWnt Signaling Went derailed Again a New Track via the LIN-18 Receptor?
In this issue of Cell, Inoue et al. (2004) reports that LIN-18, an atypical receptor tyrosine kinase related to mammalian Ryk and Drosophila Derailed, mediates Wnt signaling in parallel to LIN-17/Frizzled (Fz) during worm vulval development. LIN-18/Ryk and LIN-17/Fz appear to exhibit distinct Wnt specificity, and surprisingly, the LIN-18 intracellular domain may be dispensable.
متن کاملDifferent Paths, Same Structure: “Developmental Systems Drift” at Work
Closely related species often bear many similarities in outward appearance—think of the elongated snout of wolf and dog, or the opposing twigs on Norway and sugar maples. The parsimonious explanation for similar features is that they arise by similar developmental mechanisms, but an emerging concept in evolutionary development suggests this may not always be so. ‘‘Developmental systems drift’’ ...
متن کامل